

Tri-service Convergence:

C4ISR/EW Modular Open Suite of Standards (CMOSS)

Embedded Tech Trends

23 January 2018

Ben Peddicord

Chief, Intel Technology and Architecture Branch CERDEC I2WD

Problem Statement – Why Converge?

Years of quick reaction solutions have resulted in unsustainable SWaP-C and operator overload

- Current generation of C4ISR/EW systems exceed the size, weight, and/or power available on current and planned future platforms
- At the core, C4ISR/EW systems use many of the same building blocks, but they are not shared or distributed between systems
- Each additional capability or function comes as its own "system" resulting in:
 - Integration challenges
 - Competition for limited platform resources
 - Redundant sub-system components
 - Complex, costly and weighty cabling
 - Excessive heat generation
 - Less space on the platform for soldiers
 - RF compatibility concerns
 - High cost of maintaining and upgrading

Platforms – not just soldiers – are overburdened

Layered Standards

- Open interfaces enable rapid insertion of planned and unplanned capabilities, along with hardware sharing and interoperability across C4ISR/EW systems
- Layered approach includes specifications that are individually useful and can be combined to form a holistic converged architecture
- The aggregate architecture and associated standards is referred to as the C4ISR/EW Modular Open Suite of Standards (CMOSS)

Software Layer:

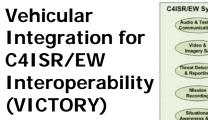
- Enables portability of software applications across hardware platforms
- Software framework selected based on mission area

Functional Decomposition:

- Allows for sharing of RF resources such as antennas and amplifiers
- Defines interfaces between RF functions and components
 - Enables best of breed along with rapid component upgrades

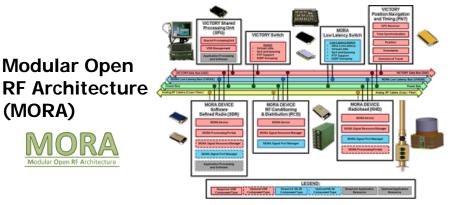
Hardware Layer:

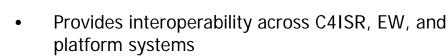
٠


- Enables capabilities to be fielded as cards in a common chassis
- Common form factor including physical, electrical, and environmental specifications

Network Layer:

- Provides connectivity within the platform and defines interfaces between capabilities
- Enables legacy systems to share services within the converged architecture


Standards Overview



- Adds a network data bus to vehicles and specifies "on-the-wire" interfaces
- Enables sharing of services such as Time, Position, and Orientation
- Applicable to ground, air, and sea platforms
- Extends VICTORY to RF systems
- Establishes pooled RF resources (antennas, amplifiers, etc.) that can be shared across missions
- Leverages ANSI/VITA 49.2-2017 for low latency control and digital RF
- Being incorporated into the VICTORY Architecture
 and Standard Specifications

Standards Overview

Software Frameworks

	VPX 1 SBC	VPX 2 Switch	VPX 3 SBC	VPX 4	VPX 5	VPX 6 Switch	VPX 7 Radiai Clock	VPX 8	VPX 9	VPX 10 SBC	VPX 11 RF Switch	VPX 12 SBC	VITA 62 Power Supply	VITA 62 Power Supply	
Utility Plane (Includes Power and IPMB)	IPINC	IPMC	IPMC	PIIC	IPMC	IPMC	IPMC	IPMC	IPMC	IPINC	IPMC	IPMC	PIAC	IPMC	
	++		ŦŦ	Radial	Redal	ŦŦ	Radial	Refe	Redal	ŦŢ	Ratial		ŦŦ		
Radial Clocks				10410035	Rental		Output	OT WAR	BET.WOR		TRACE				
				Redial	Radial			Radial	Radal						
Real-Time Data Plane (FP)				Data Plane	Data Plane			Data Plane	Deta Plane		Data Plane	Data Plane			
Non Real-Time Data Plane (UTP)	Contri Plane	Data Switch		Data Plane	Data Plana	Data Switch		Data Plane	Dets Plana			Contri Plane			
Control Plane (UTP)		Contri Switch	Contri Plane	Contri Plane	Contri Plana	Contri Switch	Contri Plane	Contri Plane	Contri Plane	Contri Plane	Contri Plane				
Expansion Plane (FP)			Data Plane	Data Plane	Data Plane			Data Plane	Cata Plane	Data Plane					
Optical/Coaxial Connectors		67.3 Module D		utopule	Nodule C		67.3 Nodule C	Module C	Module C		Net Jaka				Tedatos je Case
Choose Piler Connections ministratic Control, while Gall RT (p Bac, vite Gall Set Tone) Choose Marc Connections ministration Control Cont Cont 111 (2011) Data Set Control Cont Cont 111 (2011) Data Set Control Cont Cont (2011)												L			GPS Ans

- Hardware form factor enables capabilities to be fielded as cards in common chassis
- DoD profiles (i.e., pinouts) eliminate user-defined pins and support 2 Level Maintenance
- Single profile selected for each type of slot
- CMOSS profiles included in ANSI/VITA 65.0-2017
- Enables portability of software applications
- REDHAWK is a free and open-source software (FOSS) software defined radio (SDR) framework
- Software Communications Architecture (SCA) is developed by JTNC for Comms applications
- Future Airborne Capability Environment (FACE) is developed by NAVAIR PMA-209 for avionics applications

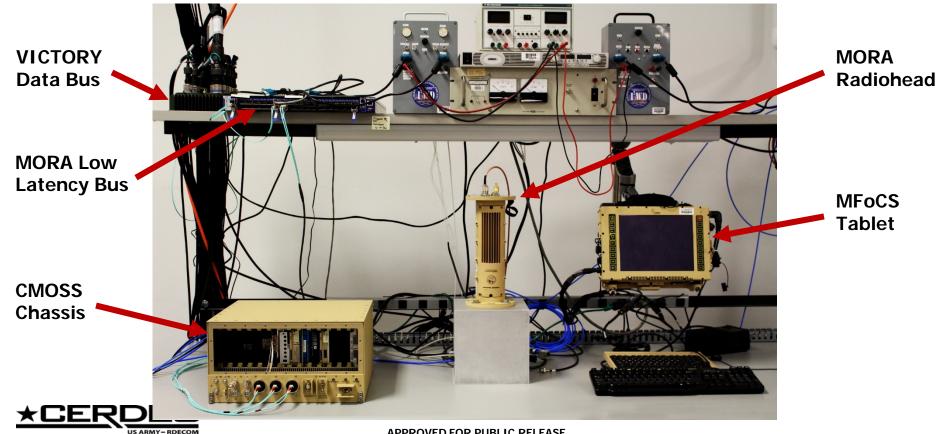
Architecture Overview

US ARMY - RDECOM

- "Universal A-Kit" allows PMs to field capabilities as cards in a common chassis and RF components that use existing cabling
- Logistic tails can be smaller due to common spares
- Unit costs can be reduced by greater competition and economies of scale
- Enables modernization through spares with hardware refresh every 5 years
- Architecture is applicable to ground, air, sea, and subsurface platforms

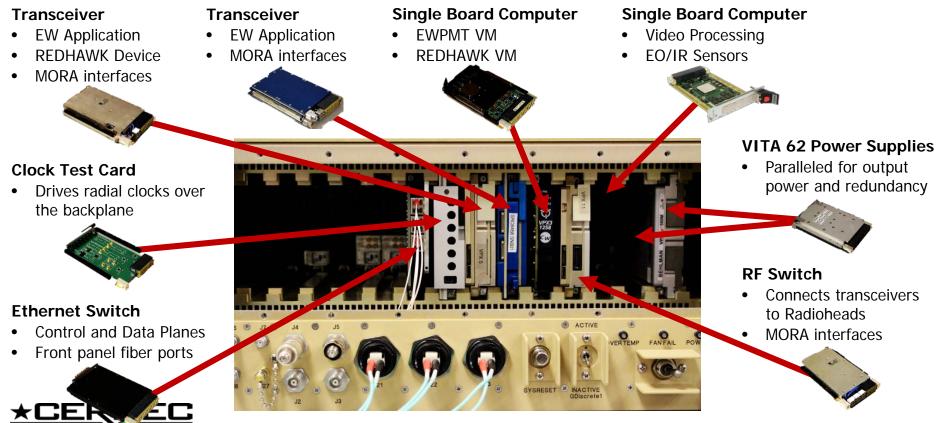
Participants

SOSA Jerus open Jacket Architecture



- AF Life Cycle Management Command (AF LCMC):
 - Participating/influencing Air Force Sensor Open Systems Architecture (SOSA)
 - I2WD is the Vice Chair of the SOSA Hardware Working Group
 - CMOSS is being included in the SOSA specification
- NAVAIR PMA-209: Alignment with Hardware Open System Technologies (HOST)
- VICTORY Standard Support Office (VSSO): Leveraging the VICTORY specification. MORA is being incorporated into the VICTORY Architecture and Standard Specifications.
- VITA Standards Organization (VSO): CMOSS requirements included in ANSI/VITA 65.0-2017, ANSI/VITA 65.1-2017, and ANSI/VITA 49.2-2017.
- Tank and Automotive Research, Development and Engineering Center (TARDEC): Partner for vehicle integration. Stryker demo in FY17.
- **National Security Agency (NSA):** Participated in WIPT to ensure architecture is accreditable. Aligning MORA and TOA.
- Academia: Research and development partners
 - MIT-LL: VITA 65 profiles and editor
 - JHU-APL: VITA 65 and 49.2 development
 - PSU-ARL: PNT card and MORA reference implementation development

CMOSS Lab Validation



CMOSS Reference Chassis

Styker Integration

Summary

- Built upon open standards, CMOSS enables the soldier for the next fight while providing significant cost savings during the procurement and sustainment phases of the life-cycle
- CMOSS is being included in and managed under the SOSA initiative with Army, Air Force, and Navy participation
- The CMOSS specifications can be obtained from:
 - VICTORY (https://portal.victory-standards.org)
 - MORA (https://portal.victory-standards.org/MORA)
 - OpenVPX (http://www.vita.com)
 - REDHAWK (https://redhawksdr.github.io/Documentation)
 - SCA (http://www.public.navy.mil/jtnc)
 - FACE (http://www.opengroup.org/face)
- SOSA (http://www.opengroup.org/sosa)